1. Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human gamma-globulin. Vox Sang. 1962;7(2):157-174.
2. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139(3S):S1-S46.
3. Farrugia A, Grazzini G, Quinti I, Candura F, Profili S, Liumbruno GM. The growing importance of achieving national self-sufficiency in immunoglobulin in Italy. The emergence of a national imperative. Blood Transfus. 2019;17(6):449-458.
4. João C, Negi VS, Kazatchkine MD, Bayry J, Kaveri SV. Passive serum therapy to immunomodulation by IVIG: a fascinating journey of antibodies. J Immunol. 2018;200(6):1957-1963.
5. Palabrica FR, Kwong SL, Padua FR. Adverse events of intravenous immunoglobulin infusions: a ten-year retrospective study. Asia Pac Allergy. 2013;3(4):249-256.
6. Dantal J. Intravenous immunoglobulins: in-depth review of excipients and acute kidney injury risk. Am J Nephrol. 2013;38(4):275-284.
7. Bellomo R, See EJ. Novel renal biomarkers of acute kidney injury and their implications. Intern Med J. 2021;51(3):316-318.
8. Konukoğlu D. Biomarkers for acute kidney injury. Int J Med Biochem. 2018;1(2):80-87.
9. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48(1):463-493.
10. Tecson KM, Erhardtsen E, Eriksen PM, et al. Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study. BMJ Open. 2017;7(7):e016028.
11. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-184.
12. Goldstein SL, Akcan-Arikan A, Afonso N, et al. Derivation and validation of an optimal neutrophil gelatinase-associated lipocalin cutoff to predict stage 2/3 acute kidney injury (AKI) in critically ill children. Kidney Int Rep. 2024;9(8):2443-2452.
13. Puthumana J, Lugon NC, Xu Y, et al. Systematic review and meta-analysis of urine neutrophil gelatinase-associated lipocalin for acute kidney injury in cirrhosis. Kidney Int Rep. 2024;9(7):2278-2281.
14. Jefferies JL, Kovesdy CP, Ronco C. Contemporary laboratory assessment of acute cardiorenal syndrome for early diagnosis: a call for action. Am Heart J. 2023;261:75-84.
15. Bolignano D, Coppolino G, Campo S, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is associated with severity of renal disease in proteinuric patients. Nephrol Dial Transplant. 2008; 23(1):414-416.
16. Lacquaniti A, Donato V, Pintaudi B, et al. "Normoalbuminuric" diabetic nephropathy: tubular damage and NGAL. Acta Diabetol. 2013;50(6): 935-942.
17. Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32(2):91-98.
18. Duan S, Chen J, Wu L, et al. Assessment of urinary NGAL for differential diagnosis and progression of diabetic kidney disease. J Diabetes Complications. 2020;34(10):107665.
19. Şen S, Özalp Kızılay D, Taneli F, et al. Urinary NGAL is a potential biomarker for early renal injury in insulin resistant obese non-diabetic children. J Clin Res Pediatr Endocrinol. 2021;13(4):400-407.
20. Nielsen SE, Andersen S, Zdunek D, Hess G, Parving HH, Rossing P. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 2011; 79(10):1113-1118.