ANKMJ

Ankyra Medical Journal (AnkMJ), formerly known as the Journal of Translational and Practical Medicine, regularly publishes international quality issues in the field of Medicine in the light of current information.

EndNote Style
Index
Original Article
Is the peripapillary area completely healthy in Stargardt disease?
Aims: To evaluate the peripapillary retinal nerve fiber layer (pRNFL) thickness measured using spectral domain optical coherence tomography (SD-OCT) in patients with Stargardt disease (STGD).
Methods: This was a single-center cross-sectional case-control study. Twenty eyes with STGD were staged according to Fishman STGD classification. Peripapillary RNFL thickness was measured using Heidelberg Spectralis SD-OCT. The mean pRNFL thickness of the four quadrants (temporal, superior, nasal, and inferior) and all quadrants were compared with the mean pRNFL thickness from 20 eyes of age-matched healthy subjects.
Results: The mean age of Stargardt patients was 40.9 years (range, 18–59 years) and that of the control group was 40.6 years (range, 19–59 years). Twenty eyes (70%) had thinner pRNFL thickness in the temporal quadrant (mean: -7.55 µm, 95%CI -3 to -12 µm, 10% thinner than the control group), whereas in the nasal quadrant, 13 of 20 eyes (65%) had thicker pRNFL (mean: 6.85 µm, 95%CI, 1–13 µm; 9% thicker compared to the control group). There was no statistically significant difference in the thickness of the superior and inferior quadrants and the global pRNFL compared to the control group.
Conclusion: STGD is considered pathognomonic for the preservation of the peripapillary retina and retinal pigment epithelium (RPE), and is mainly characterized by RPE and photoreceptor cell loss in the macula. STGD was associated with thinning of the temporal quadrant, corresponding to the macular area in the pRNFL analysis. It is not yet known whether the RNFL loss is due to transneuronal degeneration or direct damage to ganglion cells resulting from degeneration of the outer retinal layers.


1. Garces F, Jiang K, Molday LL, et al. Correlating the expression and functional activity of ABCA4 disease variants with the phenotype of patients with Stargardt disease. <em>Invest Ophthalmol Vis Sci.</em> 2018;59(6):2305-2315.
2. Raj RK, Dhoble P, Anjanamurthy R, et al. Genetic characterization of Stargardt clinical phenotype in South Indian patients using Sanger and targeted sequencing. <em>Eye Vis (Lond).</em> 2020;7:3.
3. Sparrow JR, Fishkin N, Zhou J, et al. A2E, a byproduct of the visual cycle. <em>Vision Res.</em> 2003;43(28):2983-2990.
4. Lugo-Merly A, Thurin LJM, Izquierdo-Encarnacion NJ, Casillas-Murphy SM, Oliver-Cruz A. Stargardt disease due to an intronic mutation in the ABCA4: a case report. <em>Int Med Case Rep J.</em> 2022;15:693-698.
5. Battaglia Parodi M, Cicinelli MV, Rabiolo A, Pierro L, Bolognesi G, Bandello F. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. <em>Br J Ophthalmol.</em> 2017;101(6):780-785.
6. Nassisi M, Mohand-Sa&iuml;d S, Andrieu C, et al. Peripapillary sparing with near infrared autofluorescence correlates with electroretinographic findings in patients with Stargardt disease. <em>Invest Ophthalmol Vis Sci.</em> 2019; 60(15):4951-4957.
7. Newman NM, Stevens RA, Heckenlively JR, Francisco S. Nerve fibre layer loss in diseases of the outer retinal layer from the departments of ophthalmology of the &rsquo;Pacific Presbyterian Medical Center. <em>Invest Ophthalmol Vis Sci.</em> 1987;71(1):21-26.
8. Walia S, Fishman GA. Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. <em>Invest Ophthalmol Vis Sci.</em> 2008;49(8):3525-3528.
9. Pasadhika S, Fishman GA, Allikmets R, Stone EM. Peripapillary retinal nerve fiber layer thinning in patients with autosomal recessive cone-rod dystrophy. <em>Am J Ophthalmol.</em> 2009;148(2):260-265.e1.
10. Genead MA, Pasadhika S, Fishman GA. Retinal nerve fibre layer thickness analysis in X-linked retinoschisis using Fourier-domain OCT. <em>Eye.</em> 2009; 23(5):1020-1027.
11. Fishman GA. Fundus flavimaculatus: a clinical classification. <em>Arch Ophthalmol.</em> 1976;94(12):2061-2067.
12. Abe RY, Medeiros FA. The use of spectral-domain optical coherence tomography to detect glaucoma progression. <em>Open Ophthalmol J.</em> 2015;9: 78-88.
13. Tuncer Z, Erdurman C. Does foveal position relative to the optic disc affect optical coherence tomography measurements in glaucoma? <em>Turk J Ophthalmol.</em> 2018;48(4):178-184.
14. Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. <em>Am J Ophthalmol.</em> 2013;156(2):218-227.e2.
15. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. <em>JAMA.</em> 2014;311(18):1901-1911.
16. Fisher JB, Jacobs DA, Markowitz CE, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. <em>Ophthalmology.</em> 2006;113(2):324-332.
17. Dotan G, Goldstein M, Kesler A, Skarf B. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy. <em>Clin Ophthalmol.</em> 2013;7:735-740.
18. Law SK, Small KW, Caprioli J. Peripapillary retinal nerve fiber measurement with spectral-domain optical coherence tomography in age-related macular degeneration. <em>Vision (Basel).</em> 2017;1(4):26.
19. Lee EK, Yu HG. Ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer thicknesses in age-related macular degeneration. <em>Invest Ophthalmol Vis Sci.</em> 2015;56(6):3976-3983.
20. Lund RD, Coffey PJ, Sauve Y, Lawrence JM. Intraretinal transplantation to prevent photoreceptor degeneration. <em>Ophthalmic Res.</em> 1997;29(5):305-319.
21. Stone JL, Barlow WE, Humayun MS, De Juan E, Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. <em>Arch Ophthalmol.</em> 1992;110(11):1634-1639.
22. Santos A, Humayun MS, De Juan E, et al. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. <em>Arch Ophthalmol.</em> 1997;115(4):511-515.
23. Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, Huang D. A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. <em>Am J Ophthalmol.</em> 2008;146(3):417-426.
24. Genead MA, Fishman GA, Anastasakis A. Spectral-domain OCT peripapillary retinal nerve fibre layer thickness measurements in patients with Stargardt disease. <em>Br J Ophthalmol.</em> 2011;95(5):689-693.
25. Reich M, L&uuml;bke J, Joachimsen L, et al. Thinner temporal peripapillary retinal nerve fibre layer in Stargardt disease detected by optical coherence tomography. <em>Invest Ophthalmol Vis Sci.</em> 2021;259(6):1521-1528.
26. You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal degeneration in the brain during glaucoma. <em>Front Aging Neurosci.</em> 2021;13:643685.
27. Herro AM, Lam BL. Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia. <em>Clin Ophthalmol.</em> 2015;9:1057-1064.
28. Lei Y, Garrahan N, Hermann B, et al. Quantification of retinal transneuronal degeneration in human glaucoma: a novel multiphoton-DAPI approach. <em>Invest Ophthalmol Vis Sci.</em> 2008;49(5):1940-1945.
29. Fu DJ, Xue K, Jolly JK, MacLaren RE. A detailed in vivo analysis of the retinal nerve fibre layer in choroideremia. <em>Acta Ophthalmol.</em> 2019;97(4):e589-e600.
30. Jayasundera T, Rhoades W, Branham K, Niziol LM, Musch DC, Heckenlively JR. Peripapillary dark choroid ring as a helpful diagnostic sign in advanced Stargardt disease. <em>Am J Ophthalmol.</em> 2010;149(4):656-660.e2.
31. Burke TR, Allikmets R, Smith RT, Gouras P, Tsang SH. Loss of peripapillary sparing in non-group I Stargardt disease. <em>Exp Eye Res.</em> 2010;91(5):592-600.
Volume 3, Issue 6, 2024
Page : 130-135
_Footer