1. Rahimy E. Deep learning applications in ophthalmology. Curr Opin Ophthalmol. 2018;29(3):254-260.
2. Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5-17.
3. Mikolov T, Deoras A, Povey D, Burget L, Cernocký J. Strategies for training large scale neural network language models. 2011 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2011, Proceedings. Published online 2011:196-201.
4. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI Ali MJ. ChatGPT and lacrimal drainage disorders: performance and scope of improvement. Ophthalmic Plast Reconstr Surg. 2023;39(3):221-225.
5. Alqahtani H, Kavakli-Thorne M, Kumar G. Applications of generative adversarial networks (GANs): an updated review. Arch Comput Meth Engineering. 2021;28(2):525-552.
6. ChatGPT Generative Pre-trained Transformer, Zhavoronkov A. Rapamycin in the context of Pascal’s Wager: generative pre-trained transformer perspective. Oncoscience. 2022;9:82-84.
7. O’Connor S. Open artificial intelligence platforms in nursing education: tools for academic progress or abuse? Nurse Educ Pract. 2023;66:103537.
8. Korn BS, Burkat CN, Carter KD, et al, eds. Oculofacial Plastic andOrbital Surgery. Vol 7. American Academy of Ophthalmology: 2022.
9. Wen J, Wang W. The future of ChatGPT in academic research and publishing: a commentary for clinical and translational medicine. Clin Transl Med. 2023;13(3):e1207.
10. Khan RA, Jawaid M, Khan AR, Sajjad M. ChatGPT - reshaping medical education and clinical management. Pak J Med Sci. 2023;39(2):605.
11. Gao CA, Howard FM, Markov NS, et al. Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. BioRxiv. 2022:2022.12.23.521610.
12. Jeblick K, Schachtner B, Dexl J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. Eur Radiol. Published online December 30, 2022. doi: 10.1007/s00330-023-10213-1
13. Cai LZ, Shaheen A, Jin A, et al. Performance of generative large language models on ophthalmology board style questions. Am J Ophthalmol. 2023;254:141-149.
14. Korngiebel DM, Mooney SD. Considering the possibilities and pitfalls of generative pre-trained transformer 3 (GPT-3) in healthcare delivery. NPJ Digit Med. 2021;4(1):93.
15. Nath S, Marie A, Ellershaw S, Korot E, Keane PA. New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. Br J Ophthalmol. 2022;106(7):889-892.
16. Jin Q, Dhingra B, Liu Z, Cohen WW, Lu X. Pubmedqa: a dataset for biomedical research question answering. arXiv preprint arXiv: 1909.06146.
17. Jin D, Pan E, Oufattole N, Weng WH, Fang H, Szolovits P. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. Appl Sci. 2021;11(14):6421.
18. Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLoS Digit Health. 2023;2(2):e0000198.